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Abstract. Static and dynamic susceptihilities for a Heisenberg ferromagnet with dipolar 
forces and an external magnetic field are calculated with linear spin-wave theory. Attention 
is focused on quantities that can be observed in neutron diffraction arid syrctroscopy 
experiments. Awalytic results for the susceptibilities are reported for a region of modest 
temperatures and long wavelengths. Extensive numerical results for the static longitudinal 
susceptibility of models of EuO and EuS, including first- and second-neighbour exchange 
interactions. are summarized. ~- 

1. Introduction 

The influence of dipolar forces on the static and dynamic properties of simple ferro- 
magnets has been convincingly demonstrated in measurements of spin fluctuations in 
the critical region. A striking example is the time dependence of the spin autocorrelation 
function at the critical temperature T,, which is predicted to change as a result of dipolar 
forces from a Gaussian to exponential form (Lovesey and Williams 1986, Aberger and 
Folk 1988, Frey and Schwabl1989). This is consistent with data at small wavevectors k 
obtained by the spin-echo technique for EuO (Mezei 1986). Moreover, the observed k 
dependence of the damping constant is in excellent agreement with the value derived 
from a dynamic critical exponent L = 2.5. A dipolar-induced cross-over to z = 2.0 
occurs, in the theory, at a k value that is about an order of magnitude smaller than the 
value for cross-over in static properties and time dependence, and confirmation remains 
a challenge to the experimentalist. The influence of dipolar forces is also manifest in a 
variety of other carefulexperimentsonspinBuctuationsin thecritical regionofinsulating 
and metallic magnets; see, for example, Hohenemser et a1 (1989). 

Dipolarforces, present tosome extent in all magneticmaterials, complicate the basic 
structure of a model in which the ordered state is ascribed to a simple Heisenberg 
exchange interaction. In some ways the most important complication is that the total 
magnetization is not conserved. This means, for one thing, that off-diagonal spin cor- 
relation functions(Si'Si'), whichcontribute tostaticanddynamicsusceptibilities, acquire 
a finite value. Another consequence is that, in the critical and paramagnetic regions, 
relaxational dynamics prevails in the long-wavelength limit, i.e. the dynamic critical 
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Table 1. Dipolar wavevecto? (A-'). 

Material q D  
~~~~ ~~~ 

Fe 0.045 
Ni 0.013 
EuO 0.147 
EuS 0.24 
LiTbF, 1.31 

' After Mezei (1984) and Kotzler (1986). 

exponent z = 2.0. Furthermore, spin isotropy is broken, leading to different properties 
longitudinal and transverse to k .  The longitudinal susceptibility does not diverge at T,, 
but saturates to a value determined by the dipolar (demagnetization) anisotropy. This 
effect has been observed in a polarized neutronscattering study of thecritical fluctuations 
around Bragg reflections in EuS and EuO crystals (Kotzler et al1984). In the ordered 
phase dipolar forces create magnetostatic modes which make up the ferromagnetic 
resonance spectrum, and cause a discontinuity in the spin-wave dispersion. The latter 
has been observed in a crystal Ho/lO% Tb by inelastic neutron scattering (Larsen era/ 
1987). 

By and large, the influence of dipolar forces has been revealed most clearly in 
properties of long-wavelength spin fluctuations. The examples of static and dynamic 
effects in EuO and EuS cited above appear at wavevectors k < qD. where qa is the so- 
called dipolar wavevector. Values of qD, compiled by Mezei (1984) and Kotzler (1986). 
are gathered in table 1. Four of the materials are cubic ferromagnets with weak dipolar 
forces, while LiTbF, is a tetragonal uniaxial dipolar ferromagnet, extensively studied 
by Als-Nielsen (1976a, b) using neutron diffraction. The values in the table have been 
determined from data on volume susceptibilities and inverse correlation lengths in the 
critical region. 

The behaviour of the longitudinal susceptibility X(k) in the ordered phase is not 
clearly understood. For a simple ferromagnet, ~ ( 0 )  is predicted to diverge as the applied 
field H vanishes, and the form H-'" has long been known from spin-wave theory. 
Calculations using the renormalization group technique predict that X(k )  diverges with 
vanishing k and H; ~(0) should behave like H-'n at all temperatures below T,. The 
experimental situation is not clear-cut. Kotzler and Muschke (1986) report an indication 
of 

Neutron scatteringmeasurementsofX(k) for EuOand Ni, at about 0.9Tc, by Mitchell 
and collaborators (unpublished and referred to by Toh and Gehring (1990)), which 
extend a previous investigation (Mitchell er al1984) on a disordered alloy Pd/lO% Fe, 
do not reveal a divergent behaviour. In addition, Boni et a1 (1990) find for Ni at T = 
O.987Tc that the longitudinal intensity decreases slightly on increasing the field by a 
factor 3. 

Here we use Linear ferromagnetic spin-wave theory to calculate the longitudinal and 
transverse neutron cross sections, including effects of polarization in the incident and 
scattered beams. The corresponding static susceptibilities are also provided. With regard 
to the latter. our results correct work by Toh and Gehring (1990) who use a theory, 
originally developed by Holstein andPrimakoff (1940), that isincorrect;seeforexample, 
Lowde (1965), Keffer (1966) and Lovesey (1987). 

behaviour in an analysis of bulk data for EuS. 
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Spin-wave theory of a ferromagnet, described by a Heisenberg exchange interaction 
and dipolar forces, is briefly reviewed in section 2. Results for the transverse and 
longitudinal neutron cross sections and wavevector-dependent susceptibilities are pre- 
sented in sections 3 and 4, respectively. It is shown that dipolar forces determine ~ ( 0 )  in 
zero field, while fork just beyond the magnetostatic region the dependenceX(k) 0: k-' 
holds. Section 5 contains numerical results for the susceptibilities of FCC materials with 
particular attention to parameter sets appropriate for EuO and EuS. For the latter 
material dipolar forces have a significant effect on ~ ( k )  even for k > qD. In section 6 
there are some analytic results for the longitudinal response function observable in an 
inelastic neutron scattering experiment; without dipolar forces our result corrects an 
error in the expression provided by Vaks et al(1968). The longitudinal cross section 
possesses a field-limited peak when the energy transfer matches the spin-wave disper- 
sion, which is not suppressed by dipolar forces aIthough they change the lineshape. 
Conclusions are gathered in section 7. 

2. Spin-wave theory 

In this and subsequent sections we follow the development of spin-wave theory by 
Lovesey (1987) for a Heisenberg ferromagnet with dipolar forces. For the most part, 
the notation adopted isconsistent with Lowde (1965) and Keffer (1966). 

Spin operators {S,} are assigned to sites defined by vectors 111 on a Bravais crystal 
lattice with Nunit cells. Within a linear spin-wave theory, 

[St, S,] = 2S6,,,. (2.1) 

Si = S - (1/2S)SiS: (2.2) 

and 

where S is the spin magnitude. Neutron scattering experiments measure fluctuations in 
the spatial Fourier components { S i }  where 

SF = ( I / N )  I: exp(+.iq. z ) s ~ .  (2.3) 

iaJ; = E& (2.4) 

, 
For a simple ferromagnet, these components obey the equation of motion ( h  = 1) 

in which the spin-wave dispersion E, is the sum of exchange and external magnetic field 
energies, namely 

E, = gPBH + 2S[J(O) - J(d1. (2.5) 
Here, H i s  the strength of the applied field, g the gyromagnetic factor and J ( q )  is the 
spatial Fourier transform of the exchange interactions; J(q)  = J( -9) because the lattice 
is Bravais, and J(q)  = J ( q  + 7 )  by definition of the reciprocal attice vectors {T}. 

Onaddmgdipolarforces to the Hamiltonian, the equationof motion (2.4) ischanged 
by the addition of a term E: SI,, and E, is replaced by 

A, = E, + pq1 = A - ,  = A ; .  (2.6) 

The quantity E, = E-,  # E: is the Fourier transform of part of the dipolar force field. 
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Various authors have shown that (see Keffer 1966 and references therein), for all but 
the extreme value q = 0, the appropriate functional form is 

S W Louesey and K N Trohidou 

B, = 2ngpBMo sin20qexp(-2iqq) (2.7) 

where 0, and qq define the orientation of q with respect to the preferred (easy) axis, e.g. 
qr = q sin 0 cos q, and MO is the saturation magnetization. Also, demagnetizing effects 
modify the influence of the applied field (Keffer 1966). 

Diagonalization of the new equation of motion is readily achieved in terms of Bose 
operators a and a+ that satisfy 

[aq, a; I = a,,,, 

s; = u#lq + 
with 

The coefficients in (2.9) are taken to be 

u i  = (2SN)  (Ap + wq)/2wq 

and 

ug = -u,B;/(A, + up) 

where the spin-wave dispersion wq satisfies 

=A:  - JBqIZ. 

(2.9) 

(2.10) 

(2.11) 

(2.12) 

Note that, with this choice for the coefficients, which is not unique, u,vanishes and uq = 
(2SN)  as B,-+ 0 ,  and uq is purely real whereas uq is complex. Holstein and Primakoff 
(1940) and Toh and Gehring (1990) are at fault in the determination of these coefficients, 
which the latter authors incorrectly find to be purely real. 

3. Neutron scattering cross sections and polarization effects 

The partial differential cross section for magnetic scattering of a polarized beam of 
neutrons from an array of spins is compactly expressed in terms of spin autocorrelation 
functions (Lovesey 1987, section 10.6). If the change in energy and wavevector in 
scattering are denoted by w = E - E' and k ,  respectively, and the atomic form factor 
F(k) is taken to be purely real, the cross section is 

+ iP. (sp x Sl."(t))]. 

kZS(')  = k X (S X k )  

(3.1) 
Here, ro = -0.54 X cm, P i s  the polarization vector, 

(3.2) 
and S(t)  is the standard Heisenberg operator in which f has the dimension of time. 

Within the linear spin-wave approximation, correlation functions (SxSz) and (SW) 
vanish, because they involve an odd number of Bose operators. The functions formed 
with 9 and SY describe single-spin-wave events, whereas the inelastic part of (SzSz) 



Static and dynamic susceptibilities of ferromagnets 1831 

involves the creation and annihilation of two spin-waves, as is clearly evident in the 
subsequent expression. The combinations 

( S X P  % SYSI) (3.3) 
deserve some comment; this quantity with apositive sign occurs in the first contribution 
to thecrosssection(3.1), andwithanegativesignin thesecond,polarization-dependent, 
contribution. The latter is finite and has a weight that is totally independent of the details 
of the magnetic Hamiltonian since it is, within the linear spin-wave approximation, 
simply [S", Sv] = is. This observation also tells us that the polarization created in the 
scattered beam is independent of parameters in the Hamiltonian. In particular, these 
contributions are not sensitive to dipolar forces, which are manifest only insofar as they 
contribute to the spin-wave dispersion. In contrast, thecombination (3.3) with a positive 
sign is proportional to the strength of the dipolar force, and its finite value is a direct 
consequence of the fact that the total spin, in the direction of the easy axis, is not a 
conserved quantity. 

The single-spin-wave events in (3.1) arise from 

- ~ , L , ( s ~ s ~ ( I )  + s;s;(I)) + i(R-q)(l.P)(SfSfi(t) - s~s; ( I ) ) ]  (3.4) 
where L and q are unit vectors in the direction of k and the easy axis, respectively. 
Evaluating (3.4) with the results recorded in section 2,  the spin-wave creation event is 
found to have a cross section 

(SN/2)(1+ n,Mw - 0${(1 + LZ)(Aq/wq) + (1 - @)(l&,l/wJco~P(~ - 
-2 (R-? ) ) (R .P) } .  (3.5) 

Here, n4 is the standard Bose occupation factor, and Q, is the azimuthal angle of k in the 
plane perpendicular to the easy axis. The corresponding annihilation cross section is 
proportional to 

nq8(w + U,) 

and the sign of P is reversed. With these expressions it is understood that k = T + q ,  
where  is a reciprocal lattice vector. 

Turning now to the contribution to the cross section proportional to (S'S'), it is 
convenient to introduce two structure factors defined by 

It can be shown that E ,  F 3 0, and E vanishes while F+ 1 in the absence of dipolar 
forces. We find for the inelastic part of 

(3.7a) 

the result (pis the inverse temperature) 

N(l - k:)S(k, 0) 

with 
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S ( k , o ) = ( l  -e -6")- ' - -6p_ , , { tE(p ,q) ( l  + n P + n q ) [ S ( w  - w p - w , )  

S W Lovesey and K N Trohidou 

1 

N W  
- S(w + wp + w,)] + F@, q)(np - nq)6(w + up - U,)}. (3.7b) 

Here, the first factor in S(k ,  w )  is a consequence of the condition of detailed balance. 
The following features of the cross section are worth noting: (i) it is not explicitly 
proportional to the magnitude of the spins, in contrast to single-spin-wave events; 
(ii) processes engaged in scattering involve two-spin-wave creation, annihilation and 
difference events, and only the latter occur in the absence of dipolar forces; and (iii) 
there is a zero-point contribution on account of the dipolar forces. 

If the scattering wavevector k is arranged parallel to the easy axis, the (SzSz) and the 
dipolar-induced contribution to the single-spin-wave cross section are not observed since 
both appear together with (1 - &. Moving k away from the easy axis engages these 
contributions to the cross section, and reduces the influence of the polarization of the 
incident beam, which ultimately vanishes when k is perpendicular to 7 .  

To round off this discussion of neutron scattering from ferromagnetic spin waves 
requires a record of the expressions for polarization of the scattered beam. Polarization 
of the incident and scattered beams is aligned with the easy axis, and the components of 
the polarization vectors are P, and Pi respectively. Using results from section 2, and 
formula (10.125) from Lovesey (1987) for P', we find that P: is proportional to 
-NS(k ,  w)P,  sinZO cos20 + (SN/2)(1 + n,)6(w - w,) 

x {2 cos% - (P , /u , ) [A, (I  + C O S ~ ~ C O S ~ ~ )  
+ IB,I(1+ 2 cos20) sin'@ cos 2(p - p,)]}. (3.8) 

Here, just the single-spin-wave creation contribution is included, since it dominates the 
annihilation contribution in the limit of low temperatures; the latter isderived from the 
creation contribution by replacing 

(1 + - U,) 

n,6(0 + w,) 
by 

and reversing the sign of the created polarization. The other response function in (3.8) 
is S(k, w )  defined in (3.76). The polar angles 0, p define the orientation of k relative to 
the easy axis, W .  The weight of the created polarization, which exists even when P, = 0, 
is independent of details of the Hamiltonian, for reasons mentioned already, and it 
vanishes when k and 7 are perpendicular. Contributions to P: weighted by S(k ,  0) and 
)B,\ vanish when k and 7 are aligned. For B = x/2 the longitudinal and single-spin-wave 
contributions have opposite signs, given A, > IB,1, which is required for stability. 

4. Wavevector-dependent susceptibilities 

The static wavevector-dependent susceptibilities are conveniently calculated from the 
standard expression 

1 8  
x @ ( k )  = dp e"'(''-o(ASpASj?(ip)) (4.1) 

inwhichfiistheinversetemperature. and ASdenotesthe Auctuationin thespinvariable. 
For the system under discussion, ASz = S' - (S') and AS@ = S" for LY = x ,  y .  
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The susceptibilities can be measured by neutron diffraction (Als-Nielsen 1976a, b). 
Theformalrelation betweenx(k) and thecrosssectionisnot required at present, because 
we will use (4. l), but it is worth mentioning that ~ ( k )  is proportional to the cross section 
multiplied by [I - exp(-pw)]/w and integrated over all w .  In consequence, there are 
strong similarities between terms in the cross section and ~ ( k ) ,  as will be evident in 
subsequent results. 

We choose to define two transverse susceptibilities, derived from the correlation 
functions 

a(s9-a + sssq 
with LY = p = x, y and LY = x ,  0 = y, and denote them by xi and x&. The latter is finite 
because dipolar forces break the conservation of the total spin. Using results recorded 
in section 2, we find from (4.1) the values 

xd'(k) = (sAk/wZ) (4.2) 

X&(k) = - [ s l&b(2 'Pk) l /d~  (4.3) 

and 

In the limit Bk --f 0, x,& vanishes and xi reverts to the usual expression for the spin-wave 
value of the transverse susceptibility. Referring to the single-spin-wave cross section 
(3.5) note that xi and,yid are closely related to the weights of the transverse and 
longitudinal components, respectively. With regard to the latter component, and 
X,&(k) in (4.3), while these might not be positive quantities the cross section (3.5) is 
positive, or possibly zero, since it is an observable response function. So the quantity 
,y&(k) is seen as a component of an observable response, and in isolation it does not 
have genuine physical significance. However, x $ ( k )  to some extent embodies, through 
its marked dependence on the direction of k,  the rather special features of the dipolar 
force field. 

The longitudinal susceptibility,y(k) isobtained from (4.1) on taking CY = p = z, and 
using (2.2) and (2.9)-(2,11). Employing the two structure factors defined in (3.6) 

(4.4) 

In common with the longitudinal cross section (3.7b), there is a zero-point contribution 
inx(k) induced by dipolar forces. 

To gauge the magnitude of x(k ) ,  and its dependence on the external field in (4.4) set 
k = 0, n, = (T/w,), and employ 

2S[J(O) - J ( p ) ]  = Dp2 (4.5) 
where D is the spin-wave stiffness, which is strictly valid in the limit of long wavelengths. 
In the absence of dipolar forces, the result is 

~ ' ( 0 )  = (T/8n) [~p/DlD(gp~H)'"]~'~ ( 4 4  
where uo is the unit-cell volume. Equation (4.6) shows a divergence proportional to 
H-In as the field tends to zero. Extending the analysis to small k, 

xo(k )  = ~ O ( o ) y - @  sin-'[y/(l + Y)]''~ (4.7) 
wherey = (Dk2/4h) andh = g p B H .  In the limit H+0, (4.7) givesXo(k) 0~ k-'. 
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The influence of dipolar forces on ~ ( k )  at small k is readily found from an asymptotic 
analysis that exposespossible divergent behaviour. To this end, in (4.4) set k = 0 in the 
argument of the sum, and replace the sum over q. say, by an integration in which the 
minimum wavevector is k. Differentiating the result for X(k) with respect to k leads to 
the expression 

+ M - n,(l + nk)F(k, k ) ] .  (4.8) 

Consider first the extreme case k = 0. Values of Aoand Bo, which completely determine 
the integrand, are given by Keffer (1966). They depend on the shape of the sample, 
which is a characteristic of excitations in the magnetostatic region. In general, A,, and 
Boare finiteevenin the absenceof an externalmagneticfield. From (4.8), i t  then follows 
that ~ ( 0 )  is a constant. 

Turning to the case where k is small, but beyond the region described by mag- 
netostaticmodes. the appropriatevaluesofAkandBkaregiveninsection2. On replacing 
the Bose factors in (4.8) by (T/w,) % 1, as in the calculation leading to (4.6) and (4.7), 
the angular integration can be accomplished by elementary methods. The result reveals 
that, forzeromagneticfield,X(k) = k-’andthecoefficient isindependentofthestrength 
of thc dipolar forces. Hence, dipolar forces determine ~ ( 0 )  when h = 0, while for small 
k just beyond the magnetostatic region the dependence of X(k) on k is the same as in 
(4.7), obtained without dipolar forces. Corrections to X(k) from the latter decrease its 
value. When the field is finite x( k) is a constant, in the region of k in question. 

An estimate of X(k) fork at the limit of the magnetostatic region is obtained using 
arguments that lead to (4.6) and (4.7) together with the results given in section 2. 
Defining a reduced variablew = (4nMo/H), 

X(k - 0) = hxo(O){l + x-’12 sin-’[x/(l + x ) ] ’ ~ }  (4.9) 

which predicts that dipolar forces cause a significant decrease in the susceptibility. 
An estimate of the magnitude of the zero-point contribution to ~ ( 0 ) ,  induced by 

the dipolar forces, can be obtained from (4.4), evaluated at T = 0, together with the 
approximation (4.5). As a function of the dipolar force, the leading-order contribution 
toX(0) arises from an integral of IB,/*/&:. Keeping just this term, 

X(k - 0) = t3~O(D52/h3)”2/(120n) (4.10) 

and some values of D and the wavevector 5,  defined in (5.1). are given in table 2.  For 
the moment, note that the zero-point contribution is proportional to W3”. 

The range ofvalidity of these approximate results, and the influence of dipolarforces 
at finite wavevectors, are explored in the next section in which a numerical evaluation 
of (4.4) is reported. 

5. Longitudinal susceptibility: numerical results 

The longitudinal susceptibility X(k) has been evaluated numerically for a range of 
parameters. It is a quantity of interest in both its own right, since X(k) is a basic 
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Table2.ParametersforEuOandEuS'(Fcc,easyaxis(l,1,1)) 

1835 

EuO (a  = 5.14 A, T, = 69.5 K) 
0.61 0.12 11.65 1910 0.11 

EuS (a = 5.95 A, T, = 16.5 K) 
0.24 -0.12 2.56 1184 0.18 

response function, and as aguide to the total intensity observable in a neutron scattering 
experiment. 

Results for the dipolar wavevector qD presented in table 1 lead us to expect that 
dipolar forces are more significant in EuO and EuS than either of the transition-metal 
magnets (LiTbF4 is not described by the spin-wave theory presented in section 2 ) .  A 
numericalevaluationof (4.4) has beenmadeforan~cclattice, andexchange interactions 
appropriate for EuO and EuS out to second-nearest neighbours. Values of the par- 
ameters used for EuO and EuS are given in table 2. In the spin-wave region, an 
appropriate measure of the strength of dipolar forces is a wavector defined through 

f 2  = ( 2 x M o g d D )  ( 5 4  

where M O  is the saturation magnetization. For a FCC lattice, and first- and second- 
nearest-neighbour exchange interactions, J1 and J 2  respectively, the spin-wave stiffness 
is 

D = a22S(Jl + Jz) (5.2) 

andfor europium ionsS = 7/2. NotethatvaluesofqD, derivedfrompropertiesmeasured 
near the phase transition, exceed f by a factor of about 1.35. The value for IBqI derived 
from (2.7) has been compared by Passell et al (1976) with the results obtained by 
computing the full lattice sums in the basic definition (Lovesey 1987), and these authors 
found that they agree to within two parts in lo3 over the entire Brillouin zone. In view 
of this, equation (2.7) with the value of M O  given in table 2 was used in obtaining results 
presented here. 

For the wavevector sum in expression (4.4) forX(k) the argument is evaluated at No 
points on a cubic mesh in the (BCC) reciprocal lattice unit cell. Various No were used in 
exploratory calculations performed to ascertain the accuracy of the numerical routine. 
A test with No = 5 X los points gave 0.5% accuracy for Watson's (FCC) integral, and 
this N o  was used for most of the data reported in table 3 and figures 1 and 2 .  The magnetic 
field is parallel to the easy axis, which is (1,1,1) for EuO and EuS. The wavevector kis 
specified with respect to this axis, and ( E ,  O,O), (0, E ,  0) and ( O , O ,  E )  are respectively 
parallel to (-1,-1,2), (1 , - l ,O)and(l , l , l )  inreal-spacecubicaxes.Thedimension 
of the Brillouin zone is such that ky (k,) passes through the K (L) point at which E = 
3/v2 (v3). On the other hand, k, is not aligned with a high-symmetry axis; it passes 
through a hexagonal face of the Brillouin zone, at a point (3n/4a)(-1, -1,Z) at which 

= (3/2)'/*. 
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Table3.ValuesofT~(k)(k= (O.l,O,O)(n/a),H= 1 kGork=0.012meV). 

EuO E S  
<(A-') ~ 

TIT< 0.0 0.11 0.0 0.18 

0.01 0.051 0.022 0.029 0.025 
0.10 0.804 0.423 0.102 0.368 
0.25 2.254 1.286 2.013 1.147 
0.50 4.183 2.843 4.213 2.529 

The temperature dependence of X(k) for a small k is illustrated by the data contained 
in table 3. It increases more rapidly than a linear dependence, particularly when the 
dipolar forces are included in the calculation. There is next to no difference in the 
temperature dependence ofX(k) for EuO and EuS, although in other respects there are 
marked differences, cf figures 1 and 2. The value of k used in the calculations reported 
in table 3,0.061 and 0.053 A-' for EuO and EuS, respectively, is relatively small on the 
scale that can readily be achieved in a neutron diffraction experiment. We have chosen 
to list Ta(k) because it is a dimensionless quantity, given our definition of static sus- 
ceptibilities, and it is also of a similar magnitude for the two europium compounds. 

Looking more closely at the data in table 3 reveals that the reduction in ~ ( k )  caused 
by dipolar forces is the same for EuO and EuS at each temperature except the very 
lowest one. The reduction factor, which ranges from 0.53 to 0.60 for the three highest 
temperatures, isroughlyin accord with(4.7),about which wewillsay more later.Hence, 
within the spin-wave approximation and for modest temperatures, dipolar forcesreduce 
the longitudinal susceptibility by an amount that is largely independent of the magnitude 
of exchange forces and strength of the dipolar force. However, at a sufficiently low 
temperature the relative magnitudes ofX(k) with and without dipolar forces is reversed. 
For, without dipolar forces X(k) vanishes in the limit T-+ 0, whereas it is finite with 
dipolar forces, i.e. there is a zero-point contribution in the latter case, since the exact 
ground state is not a simple collinear ferromagnetic configuration. This cross-over in the 
magnitudeofX(k)isillustratedin thedataforEuSat T =  O.OlT,, wherex(k)ismoreor 
less the same for the two cases. 

To gauge the accuracy of (4.9) for X(k) in the absence of dipolar forces, it can be 
compared with data given in table 3. As an example, for T = TJ4 results from (4.9) 
differ from the numerical data by 29% and 1% for EuO and EuS, respectively. In fact, 
(4.9) appears to be tolerable when y S 1.0, and the large differences in accuracy found 
for the two compounds reflects significantly different values of y ,  namely 3.758 and 
0.616, which is largely attributed to the different values of D for EuO and EuS. 

Turning now to (4.7). which contains the influence of dipolar forces on x(O), it 
appears from table 3 to overestimate by a factor that is typically 40%. However, this is 
based on a comparison ofX(0) with data of a small finite wavevector, and ~ ( k )  certainly 
increases ask tends to zero, cf figures 1 and 2. Going to much smaller values of k turns 
up a special situation in the numerical evaluation of ~ ( k ) ,  and since our smallest k is 
more or less at the limit of what can be readily achieved in an experiment. extremely 
small k-values have not been tackled. 

There is significantly more spatial anisotropy in x(k) for EuS than EuO, on account 
of the competing exchange interactions in the former compound. This feature of,y(k) is 
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Figure 1. Values of Ta(k) for EuO at a tem- 
perature T= T,/2 and a magnetic field H = 1 kG 
(h  = 0.012 mev) parallel to the easy axis are dis- 
played for various values of k, and k,. Wave- 
vectors are taken relative to the easy axis, which 
is (1,1,1) in thexclattice, and measured in units 
of n/a, where values of the lattice constant a are 
provided in table 2, e.g. k, = (n/a)(E, 0,O) with 
0 s E h 2. Results without dipolar forces are 
denoted byfullcirclesandarefork,,valuesbeing 
very little different in the other principal dlrec- 
tions. Dipolar forces induce more anisotropy but 
it is significant only at large k. The full square (kJ 
and cross(k) for 5 = 2.0 areextremevalues at this 
5, and values of x(kJ are provided for smaller E .  

"I. 
4.0 

. .  -. . o. 0 .  . - .  . .  
* X .  

0 . 5  
0 0  I O  20 3.0 

5 
Figure 2. As in figure 1 but with exchange par- 
ameters appropriate for EuS, and 0 < E s 3. 
Re,sults without dipolar forces are denoted by full 
circles. For 5 S 1.0 the anisotropy in x(k) is too 
small to dispky effectively. It is found that 
x(kJ  < ~(k,) < x(k,),andtheextremevaluesare 
shown for E = 1.5, while all values are displayed 
at other selected E > 2. Including dipolar forces 
reduces x(k), and values at k,. k, and k, are 
denoted by crosses, open circles and full squares, 
respectively. At E = 0.1 and 1.0 there is minimal 
difference in the values of x(k) so one value is 
shown, while at 5 = 0.2,0.5 and 1.5 the extreme 
values are glven. Beyond E = v3 crystal sym- 
metry strongly influences the behaviour of x(k) 
with respect to the direction ofk. 

illustrated in figures 1 and2, whichdisplay valuesof Tack) for kalong the principal axes, 
relative to the easy axis. For EuO without dipolar forces, there is minimal anisotropy 
out to k = k / a ,  and with dipolar forces the anisotropy is significant only at large 
wavevectors, e.g. fork = k / a  there is a 9% difference between x(k,) and ,y(k,). The 
corresponding figures for EuS are 28% and 33% with and without dipolar forces, 
respectively, and the latter reduce X(k) by about 50% at all k points included in 
figure 2. 

6. Longitudinal dynamic susceptibility 

Properties of the longitudinal susceptibility, or response function, S(k, U )  defined in 
(3.7b) can be extracted in various limiting cases. First, we consider the case of exchange 
and magnetic field interactions. Using ( 4 4 ,  Ek = Dk2 and h = gpBH, the result is 



1838 S W Louesey and K N Trohidou 

This expression corrects the result of Vaks et al(1968). It is consistent with the sus- 
ceptibility (4.9) calculated via the standard relation 

x0(k )  = 2 I' %S(k, w).  
- 0 2  

In the limit k -  0 (w b i t e ) .  S(k, w )  vanishes, while for w+O ( k  finite) it achieves a 
value that increases with decreasing k .  The intensity of the peak in S(k, w )  at w = Ek is 
obviously suppressed by the applied field, but this effect is mildly dependent on the 
magnitude of H because of the behaviour of the logarithm. 

While for finite dipolar forces we have not found an expression equivalent to (6.1), 
behaviour of the frequency moments reveals that dipolar forces decrease S(k, w )  at 
large w ,  at least for small k .  From (3.76), with n = - 1 , 1 , 3 , .  . . , 

1 
dww"S(k,w) = - ~ 6 F - , , k [ E @ , q ) ( l  + n F +  n p ) ( W F + w q ) "  I:, 2 N F , q  

+ F(P, d ( n F  - a,) (w, - w,)"I (6.3) 
Setting k = 0 in the expression for n 2 1 shows that the frequency moments are pro- 
portional to E ,  and hence the square of the dipole force parameter E .  The value of (6.3) 
fork = 0 ,  n = 1 is (3Tj3u0/32.\/2) in the limit If-, 0 and to leading order in j ,  defined 
in (5.1). In conjunction with this result we have the result (4.7) for x(O), related to 
S(k, w )  as in (6.2).  A numerical evaluation of S(k ,  w ) ,  for a wide range of parameters, 
is the subject of a separate paper. 

7. Conclusions 

With regard to the influence of dipolar forces on the neutron cross section for single- 
spin-wave events, Lowde's (1965) longitudinal dipolar-induced contribution has been 
confirmed, and the polarization-dependent contribution is shown to have a weight that 
does not depend on the nature of the Hamiltonian, other than that the configuration is 
ferromagnetic. The same remark holds for the created polarization. However, the final 
polarization of an initially polarized beam contains a term that is an analogue of Lowde's 
term in the cross section. The magnitude of this term depends on the directions of the 
spin-wave momentum and the scattering vector. The so-called longitudinal cross section 
contains two-spin-wave scattering events. Unlike single-spin-wave scattering, zero- 
point fluctuations, due to dipolar corrections to the assumed classical ferromagnetic 
ground state, appear explicitly. An analytic result for the longitudinal response, valid 
for modest temperatures and small wavevectors, displays a field-limited enhancement 
at the spin-wave dispersion frequency. This effect is not removed by dipolar forces, 
although these change the tineshapes at higher frequencies. The predicted decrease in 
intensity due to dipolar forces is consistent with the decrease found in the longitudinal 
susceptibility, X(k). 

Numerical results for ~ ( k )  with a small k for EuO and EuS show that at a given 
temperature ( T <  TC/2) dipolar forces reduce it by about the same amount for the two 
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compounds. Differences in ~ ( k )  for these magnets appear at temperatures low enough 
for zero-point fluctuations to be significant, and also in the dependence of x(k)  on the 
wavevector. There is next to no spatial anisotropy in ~ ( k )  for EuO, whereas there 
is pronounced anisotropy at large k for EuS, generated by the competing exchange 
interactions. Moreover, dipolar forces iduence X ( k )  for EuO most keenly at small k ,  
whereas in EuS there is a large reduction at all wavevectors examined. Analytic results 
for ~ ( 0 )  show the expected H-'b  field dependence at modest temperatures, which 
changes to H-3/2 at zero temperature. An expression for X(k) valid for small k displays 
a divergence in the long-wavelength limit of the form k F 1  when H = 0. 

Our results for the longitudinal and transverse static susceptibilities correct previous 
work by Toh and Gehring (1990). In essence, their expressions are obtained from our 
6ndings by setting to zero the azimuthal angle of the wavevector, with respect to the 
easy axis, which is explicit in (3.6) and (4.4) and (4.3). In consequence, their results do 
not contain geometric factors characteristic of the dipolar force field, which contribute 
to the spatial anisotropy in ~ ( k )  and directly influence the single-spin-wave cross section. 
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